Maschinelles Lernen mit R

Daten aufbereiten und verarbeiten mit H2O und Keras

39,99 € (Print)

inkl. MwSt., ggf. zzgl. Versandkosten

sofort lieferbar
39,99 € (PDF)

sofort lieferbar

39,99 € (ePub)

sofort lieferbar

  • 978-3-446-47165-8
  • 1. Auflage, 03/2022
    379 Seiten, fester Einband
  • E-Book Inside
Beschreibung
Maschinelles Lernen mit R
- Grundlagen und Beispiele
- Daten visualisieren und analysieren
- Lernergebnisse bewerten und übertragen
- Mit vielen Beispielen in R zum Download unter plus.hanser-fachbuch.de
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches

Wie bringt man Computern das Lernen aus Daten bei?

Diese praxisorientierte Einführung vermittelt anhand zahlreicher Beispiele die Grundlagen des maschinellen Lernens mit R, H2O und Keras. Sie werden in die Lage versetzt, den jeweils zielführenden Ansatz auszuwählen und auf eigene Fragestellungen wie Bild-Klassifizierung oder Vorhersagen anzuwenden.
Da fehlerhafte Daten den Lernerfolg gefährden können, wird der Datenvorbereitung und -analyse besondere Aufmerksamkeit gewidmet. R stellt hierfür hochentwickelte und wissenschaftlich fundierte Analyse-Bibliotheken zur Verfügung, deren Funktionsweise und Anwendung gezeigt werden.

Sie erfahren, für welche Anwendungsfälle statistische Verfahren wie Regression, Klassifikation, Faktoren-, Cluster- und Zeitreihenanalyse ausreichen und wann Sie besser mit neuronalen Netzen wie z. B. CNNs oder RNNs arbeiten sollten. Hier kommen das Framework H20 sowie Keras zum Einsatz.

Anhand von Beispielen wird gezeigt, wie Sie Stolpersteine beim Lernvorgang analysieren oder von vornherein vermeiden können. Darüber hinaus erfahren Sie, unter welchen Umständen Sie die Ergebnisse des maschinellen Lernens weiterverwenden können und wie Sie dabei vorgehen.
Maschinelles Lernen mit R
- Grundlagen und Beispiele
- Daten visualisieren und analysieren
- Lernergebnisse bewerten und übertragen
- Mit vielen Beispielen in R zum Download unter plus.hanser-fachbuch.de
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches

Wie bringt man Computern das Lernen aus Daten bei?

Diese praxisorientierte Einführung vermittelt anhand zahlreicher Beispiele die Grundlagen des maschinellen Lernens mit R, H2O und Keras. Sie werden in die Lage versetzt, den jeweils zielführenden Ansatz auszuwählen und auf eigene Fragestellungen wie Bild-Klassifizierung oder Vorhersagen anzuwenden.
Da fehlerhafte Daten den Lernerfolg gefährden können, wird der Datenvorbereitung und -analyse besondere Aufmerksamkeit gewidmet. R stellt hierfür hochentwickelte und wissenschaftlich fundierte Analyse-Bibliotheken zur Verfügung, deren Funktionsweise und Anwendung gezeigt werden.

Sie erfahren, für welche Anwendungsfälle statistische Verfahren wie Regression, Klassifikation, Faktoren-, Cluster- und Zeitreihenanalyse ausreichen und wann Sie besser mit neuronalen Netzen wie z. B. CNNs oder RNNs arbeiten sollten. Hier kommen das Framework H20 sowie Keras zum Einsatz.

Anhand von Beispielen wird gezeigt, wie Sie Stolpersteine beim Lernvorgang analysieren oder von vornherein vermeiden können. Darüber hinaus erfahren Sie, unter welchen Umständen Sie die Ergebnisse des maschinellen Lernens weiterverwenden können und wie Sie dabei vorgehen.
Kundenbewertungen für "Maschinelles Lernen mit R"
(Geprüfte Bewertung)
13.09.2022

Statistik umfassend veranschaulicht

Das Buch „Maschinelles Lernen mit R“ von Prof. Schell veranschaulicht Statistik umfassend. Es vermittelt dem Leser Statistikanwendungen im Kontext der künstlichen Intelligenz und Digitalisierung und ist ausgesprochen anwenderorientiert. Besonders hervorzuheben ist hierbei die verständliche Formulierung, ein auf Basis verständlicher Beispiele gestalteter Lesefluss und begleitende Illustrationen (z.B. Plots), so dass auch komplexe Sachverhalte sehr einprägsam und nachvollziehbar dargelegt werden. Hilfreich sind ebenso die einleitenden Fragen, die den Sachverhalt konkretisieren sowie die vorbereiteten Aufgaben zum Erlernen und Erleben der praktischen Anwendung. Bei unserer Forschungs- und Projektarbeit im Bereich Data Science und Smart Logistik findet das Buch aktuell vielfältige Anwendung. Prof. Schell hat ein anwenderorientiertes Handbuch geliefert, das Nutzern von R und somit statistischer Ansätze im Bereich der künstlichen Intelligenz mit Fokus auf Analyse und Interpretation der zugrundeliegenden Sachverhalte auf unterschiedlichem Anwendungsniveau wertvolle Hilfestellung leistet.

(Geprüfte Bewertung)
04.05.2022

Komplettkurs zur angewandten Datenanalyse

Das Buch bietet eine Einführung in die Anwendung statistischer Verfahren zur Voraussage und Klassifizierung von Daten. Dabei setzt es keine Statistik-Kenntnisse voraus.
Alle für die Datenanalyse benötigten Werkzeuge - vom Statistik-System R über R-Studio bis hin zu H20 und Keras/Tensorflow werden in ihren Grundzügen vorgestellt. Der/die LeserIn erhält mit dem Buch Zugang zu einem Code-Repository, so dass er/sie die Beispiele mit den vorgestellten Werkzeugen selbst nachvollziehen kann.
Die Beispiele sind für den Lernenden recht einfach gehalten und vermitteln so vor allem ein Gefühl für das grundsätzliche Herangehen. Es ist zu empfehlen, parallel zur Lektüre des Buches die vorgestellten Verfahren mit eigenen Daten nachzuvollziehen. Das Buch erwähnt viele der Probleme, die dabei auftreten können, bietet für deren Lösung aber nur wenig Hilfe - immerhin jedoch genug Informationen für den Leser/die Leserin um selbständig nach weiteren vertiefenden Informationen zu suchen.
Da das Buch den kompletten Prozess von der Datenerfassung bis zum trainierten Modell behandelt und auch klassische statistische Verfahren als Teil des Maschinellen Lernens behandelt, verbleibt für das Maschinelle Lernen im engeren Sinne unter Verwendung von neuronalen Netzen etwa ein Drittel des Buches.
Insgesamt kann das Buch für LeserInnen, die sich ernsthaft mit der Analyse von Daten beschäftigen wollen, als Einstieg uneingeschränkt empfohlen werden.

Bewertung schreiben
Bewertungen werden nach Überprüfung freigeschaltet.

Die mit einem * markierten Felder sind Pflichtfelder.

Autor(en)

Prof. Dr. Uli Schell lehrt seit 1997 an der Hochschule Kaiserslautern. Er ist stellvertretender Direktor des „Chinesisch-Deutschen Kollegs für Intelligente Produktion“ an der Shanghai DianJi University sowie Leiter der Technischen Akademie Südwest Kaiserslautern. Zuvor war er Software-Entwickler und Methoden-Berater bei BBC und der SAP AG.

Prof. Dr. Uli Schell lehrt seit 1997 an der Hochschule Kaiserslautern. Er ist stellvertretender Direktor des „Chinesisch-Deutschen Kollegs für Intelligente Produktion“ an der Shanghai DianJi University sowie Leiter der Technischen Akademie Südwest Kaiserslautern. Zuvor war er Software-Entwickler und Methoden-Berater bei BBC und der SAP AG.

Rezensionen

"Diese praxisorientierte Einführung vermittelt anhand zahlreicher Beispiele die Grundlagen des maschinellen Lernens mit R, H2O und Keras. [...] Anhand von Beispielen wird gezeigt, sie Stolpersteine beim Lernvorgang analysiert oder von vorneherein vermieden werden können." SPS Magazin, Mai 2022


"Diese praxisorientierte Einführung vermittelt anhand zahlreicher Beispiele die Grundlagen des maschinellen Lernens mit R, H2O und Keras. [...] Anhand von Beispielen wird gezeigt, sie Stolpersteine beim Lernvorgang analysiert oder von vorneherein vermieden werden können." SPS Magazin, Mai 2022


Cover Downloads

Die Coverdateien dürfen Sie zur Bewerbung des Buches honorarfrei verwenden.

3D Cover

2D Cover

Die Coverdateien dürfen Sie zur Bewerbung des Buches honorarfrei verwenden.

3D Cover

2D Cover

Newsletter

Nichts mehr verpassen!

Aktuelles & Angebote
im monatlichen IT-Newsletter.

Hanser Youtube Channel

Autoreninterviews,
Messebesuche, Buchvorstellungen,
Events
und vieles mehr.

Hanser Podcast

Wissen für die Ohren

Themen aus Wirtschaft,
Management und Technik