€59,99 (Print)

inkl. MwSt., ggf. zzgl. Versandkosten

vorbestellbar
€59,99 (PDF)
  • 978-3-446-47937-1
  • 3., aktualisierte und erweiterte Auflage, 11/2024
    704 Pages, Hardcover
Beschreibung
Handbuch Data Science und KI
Data Science, Big Data und künstliche Intelligenz gehören derzeit zu den Konzepten, über die in Industrie, Regierung und Gesellschaft am meisten diskutiert wird, die aber auch am meisten missverstanden werden. Dieses Buch klärt diese Konzepte und vermittelt Ihnen praktisches Wissen, um sie anzuwenden.
Das Buch nähert sich dem Thema Data Science von mehreren Seiten. Es zeigt Ihnen, wie Sie Datenplattformen aufbauen sowie Data Science Tools und -Methoden anwenden. Auf dem Weg dorthin hilft es Ihnen zu verstehen - und den verschiedenen Interessengruppen zu erklären - wie Sie aus diesen Techniken einen Mehrwert generieren können, z. B. indem Sie Data Science einsetzen, um Unternehmen dabei zu helfen, schnellere Entscheidungen zu treffen, Kosten zu senken und neue Märkte zu erschließen.
In einem zweiten Teil werden die grundlegenden Data-Science-Konzepte beschrieben, einschließlich mathematischer Grundlagen, Machine-Learning-Verfahren inklusive Frameworks sowie Text-, Bild- und Sprachverarbeitung. Abgerundet wird das Buch durch rechtliche Überlegungen und praktische Fallstudien aus verschiedenen Branchen.

AUS DEM INHALT //
- Grundlagen der Mathematik: ML-Algorithmen verstehen und nutzen
- Machine Learning: Von statistischen zu neuronalen Verfahren; von Transformers und GPT bis AutoML
- Natural Language Processing: Werkzeuge und Techniken zur Gewinnung von Erkenntnissen aus Textdaten und zur Entwicklung von Sprachtechnologien
- Computer Vision: Erkenntnisse aus Bildern und Videos gewinnen
- Modellierung und Simulation: Modellierung des Verhaltens komplexer Systeme, Durchführen von Was-wäre-wenn-Analysen
- ML und KI in der Produktion: Vom Experiment zum Data-Science-Produkt
- Ergebnisse präsentieren: Grundlegende Präsentationstechniken für Data Scientists

Das Autor:innenteam besteht aus Datenexpert:innen aus der Wirtschaft und aus dem akademischen Umfeld. Das Spektrum reicht von strategisch ausgerichteten Führungskräften über Data Engineers, die Produktivsysteme erstellen, bis hin zu Data Scientists, die aus Daten Wert generieren. Alle Autor:innen sind im Vorstand oder Mitglieder der Vienna Data Science Group (VDSG). Diese NGO hat sich zum Ziel gesetzt, eine Plattform für den Wissensaustausch zu etablieren.
Handbuch Data Science und KI
Data Science, Big Data und künstliche Intelligenz gehören derzeit zu den Konzepten, über die in Industrie, Regierung und Gesellschaft am meisten diskutiert wird, die aber auch am meisten missverstanden werden. Dieses Buch klärt diese Konzepte und vermittelt Ihnen praktisches Wissen, um sie anzuwenden.
Das Buch nähert sich dem Thema Data Science von mehreren Seiten. Es zeigt Ihnen, wie Sie Datenplattformen aufbauen sowie Data Science Tools und -Methoden anwenden. Auf dem Weg dorthin hilft es Ihnen zu verstehen - und den verschiedenen Interessengruppen zu erklären - wie Sie aus diesen Techniken einen Mehrwert generieren können, z. B. indem Sie Data Science einsetzen, um Unternehmen dabei zu helfen, schnellere Entscheidungen zu treffen, Kosten zu senken und neue Märkte zu erschließen.
In einem zweiten Teil werden die grundlegenden Data-Science-Konzepte beschrieben, einschließlich mathematischer Grundlagen, Machine-Learning-Verfahren inklusive Frameworks sowie Text-, Bild- und Sprachverarbeitung. Abgerundet wird das Buch durch rechtliche Überlegungen und praktische Fallstudien aus verschiedenen Branchen.

AUS DEM INHALT //
- Grundlagen der Mathematik: ML-Algorithmen verstehen und nutzen
- Machine Learning: Von statistischen zu neuronalen Verfahren; von Transformers und GPT bis AutoML
- Natural Language Processing: Werkzeuge und Techniken zur Gewinnung von Erkenntnissen aus Textdaten und zur Entwicklung von Sprachtechnologien
- Computer Vision: Erkenntnisse aus Bildern und Videos gewinnen
- Modellierung und Simulation: Modellierung des Verhaltens komplexer Systeme, Durchführen von Was-wäre-wenn-Analysen
- ML und KI in der Produktion: Vom Experiment zum Data-Science-Produkt
- Ergebnisse präsentieren: Grundlegende Präsentationstechniken für Data Scientists

Das Autor:innenteam besteht aus Datenexpert:innen aus der Wirtschaft und aus dem akademischen Umfeld. Das Spektrum reicht von strategisch ausgerichteten Führungskräften über Data Engineers, die Produktivsysteme erstellen, bis hin zu Data Scientists, die aus Daten Wert generieren. Alle Autor:innen sind im Vorstand oder Mitglieder der Vienna Data Science Group (VDSG). Diese NGO hat sich zum Ziel gesetzt, eine Plattform für den Wissensaustausch zu etablieren.
Customer evaluation for "Handbuch Data Science und KI"
Write an evaluation
Evaluations will be activated after verification.

The fields marked with * are required.

Cover Downloads

You may use the cover files free of charge to promote the book.

3D Cover

2D Cover

You may use the cover files free of charge to promote the book.

3D Cover

2D Cover

All books by this author Customers also viewed